新盐城乐聚社区

[答疑解惑] 高二数学四大解题思想

[复制链接] 0
回复
3019
查看
打印 上一主题 下一主题

2616

主题

2647

帖子

8906

积分

版主

Rank: 19Rank: 19Rank: 19

积分
8906

首届研讨会纪念勋章

楼主
跳转到指定楼层
分享到:
发表于 2016-6-9 09:12:52 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
高二数学四大解题思想

想要学好数学,学会解题是关键,数学思想方法在解题中有不可忽视的作用。分类讨论思想、数形结合思想、函数与方程、转化与划归思想是高中数学四大非常重要的思想,是同学们学好数学的保障,突破高分的门槛。它们贯穿于高中数学的整个学习过程中,同时也是高考数学必考的数学思想方法。所以,学好高中数学,突破数学高分,必须有这四大思想方法的保驾护航。

  数学思想方法之分类讨论

  分类讨论思想具有较高的逻辑性及很强的综合性,纵观近几年的高考数学真题,不管是文科还是理科,同学们在解决最后的数学综合问题时,基本上都需要分类讨论。本节课老师给同学们深度剖析了分类讨论思想,并结合典型例题引导同学们树立分类讨论思想,教会同学们如何灵活运用分类讨论思想解决数学问题。

  数学思想方法之数形结合

  数形结合思想是借助于数学图形解决数学问题,它可以使复杂的问题简单化,抽象的问题直观化,是解决综合问题的得力助手。正是因为数形结合的这种优越性,它已经成为高考必考的数学思想方法。在这节课中,老师通过典例精析给同学们总结了数形结合思想在高中数学各个板块中的灵活运用,帮助你形成数形结合的思维方式,突破数学难题。

  数学思想方法之函数

  函数与方程思想是非常重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多;

  数学思想方法之方程、转化与化归

  转化与化归思想在高考中也占有十分重要的地位,数学问题的解决,总离不开转化与化归.本节课老师给大家总结并分析了函数与方程思想以及转化与化归思想的常见题型,并重点讲解了函数与方程、转化与化归在解题中的灵活运用。

  这四大数学思想方法在德智教育咱们用了三节课的进行详细的讲解,相信同学们对这四大数学思想一定会有一个全新的认识,如果同学们这四种数学思想都能掌握的很好,那么你一定会成为解决数学问题的高手。想要学好数学,冲刺数学高分的同学,赶紧过来跟着老师认真学习这四大数学思想吧!

  文章转自网络

  

真诚   努力   爱心





回复

使用道具 举报

使用高级回帖 (可批量传图、插入视频等)快速回复

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则   Ctrl + Enter 快速发布  

发帖时请遵守我国法律,网站会将有关你发帖内容、时间以及发帖IP地址等记录保留,只要接到合法请求,即会将信息提供给有关政府机构。
快速回复 返回顶部 返回列表