新盐城乐聚社区

[答疑解惑] 学习数学应掌握的五种解题思路

[复制链接] 0
回复
1313
查看
打印 上一主题 下一主题

2616

主题

2647

帖子

8906

积分

版主

Rank: 19Rank: 19Rank: 19

积分
8906

首届研讨会纪念勋章

楼主
跳转到指定楼层
分享到:
发表于 2016-1-20 15:18:35 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
 数学解题思路一:函数与方程  函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题; 方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与 方程间的相互转化。
  数学解题思路二:数形结合
  中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法 宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
  数学解题思路三:特殊与一般
  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
  数学解题思路四:极限思想解题步骤
  极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
  数学解题思路五:分类讨论
  我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况 加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图 形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
     文章转自网络

回复

使用道具 举报

使用高级回帖 (可批量传图、插入视频等)快速回复

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则   Ctrl + Enter 快速发布  

发帖时请遵守我国法律,网站会将有关你发帖内容、时间以及发帖IP地址等记录保留,只要接到合法请求,即会将信息提供给有关政府机构。
快速回复 返回顶部 返回列表